MCD of Uranyl D_{3h} and D_{5h} Complexes

C. GÖRLLER-WALRAND and W. COLEN

University of Leuven, Laboratory of Inorganic Chemistry, Celestijnenlaan 2OOF, 3030 Heverlee, Belgium Received October 5, 1983

The aim of this note is to illustrate how the unique properties of circularly polarized light applied to the UO,++ system in a magnetic field (MCD) can provide information on the identification of electronic states which are not readily deduced by other means. In EPR for example the sign and sense of the magnetic field is completely lost.

The spectra (see Fig. 1) for two types of equatorial non centro-symmetric complexation of the uranyl ion are discussed: the D_{5h} symmetry in $Cs₃UO₂F₅$ and the D_{3h} symmetry present in trinitrate complexes $(example: NBu₄UO₂(NO₃)₃$.

Only the induced electric dipole transitions are considered: they clearly dominate the spectrum by progressions in the symmetric stretching vibration of the UO_2 ⁺⁺ ion (ν_s) , as can be deduced from the comparison with centro-symmetric complexes e.g. $Cs₂UO₂Cl₄$.

Considerations on other intensity mechanisms can be found in papers previously published by Denning and co-workers $\lceil 1-4 \rceil$ as well as by our group $\lceil 5-7 \rceil$.

Comments on MCD and Sign of the A Term

One of the unusual features of the interaction of a magnetic field with molecules or ions is that transitions between the levels split by the field are allowed for circularly polarized light.

Indeed, electric dipole radiation has a well-defined total angular momentum $J = 1$ but only circularly polarized light has a well defined z component of angular momentum $M_J = -1$ and $M_J = +1$ for left and right circularly polarized light. These properties can be used to develop selection rules for absorption and emission based on the conservation of angular momentum. The classical example is that of a transition from ¹S atomic state $(J = 0)$ to ¹P $(J = 1)$.

In the absence of a magnetic field the transition takes place to give one absorption line for unpolarized radiation. The signal is related to the dipole strength (D) containing the transition moment or the matrix element in the transition operator, in our case, the electric dipole operator:

 ϵ = 108.9Dvf(v)

with D: dipole strength =
$$
\frac{3}{2d_{\mathbf{a}}}\sum_{\mathbf{j} \leftarrow \mathbf{a}} [|R_-|^2 + |R_+|^2]
$$

In a magnetic field the P state is split into its magnetic components. For circularly polarized light the selection rules indicate that there are two distinct transitions. Measurement of $\epsilon_1 - \epsilon_r$ (the circular dichroism) yields the line shape shown in Fig. 2.

This band shape is called a Faraday A term and arises when the system possesses a degenerate ground or excited state.

The signal is now related to the A term that contains, besides a difference of transition moments, a difference of magnetic moments

$$
\Delta \epsilon = -1.02 \, 10^{-2} \, \text{A} \nu \, \frac{\text{df}(\nu)}{\text{d} \nu}
$$
\n
$$
\mathbf{A} = \frac{3}{2 \, \text{d}_{\mathbf{a}}} \sum_{\mathbf{j} \leftarrow \mathbf{a}} \left[\langle \mathbf{j}^{\text{o}} | \mu_{\mathbf{z}} | \mathbf{j}^{\text{o}} \rangle (|\mathbf{R}_{\text{e}}|^2 - |\mathbf{R}_{\text{e}}|^2) \right]
$$

In the example of ${}^{1}P \leftarrow {}^{1}S$ transition, left circularly polarized light will be absorbed between the $M_J = 0$ (${}^{1}S$) component and M_J = +1 (${}^{1}P$) component according to:

$$
\langle \psi(\mathbf{JM}_\mathbf{J}) | \mathbf{R}_{\rho}^{(1)} | \psi(\mathbf{J}'\mathbf{M}_\mathbf{J}') \rangle =
$$

= $(-1)^{\mathbf{J}-\mathbf{M}} \mathbf{J} \begin{pmatrix} \mathbf{J} & \mathbf{1} & \mathbf{J}' \\ -\mathbf{M}_\mathbf{J} & \rho & \mathbf{M}_\mathbf{J}' \end{pmatrix} \langle \psi(\mathbf{J}) || \mathbf{R} || \psi(\mathbf{J}') \rangle$

with $\rho = +1$, -1 for right and left circularly polarized light, while absorption of right circularly polarized light occurs between $M_J = 0$ and $M_J = -1$. At highest energy absorption between the components $M_J = 0$ (ground state) and $M_J = +1$ (excited state) occurs for left circularly polarized light, leading to a positive A term.

Application to the UO_2 ⁺⁺ Ion in D_{3h} and D_{5h} Sym**metry**

In order to apply this to the $UO₂$ ⁺⁺ complexes one has to keep in mind that before the Zeeman field is applied other perturbing fields are to be taken into

0 Elsevier Sequoia/Printed in Switzerland

0020- 1693/84/\$3 .OO

account: the electron repulsion (ER), spin orbit perturbation so that there is strong coupling (Soc) and crystal field (CF). is larger than all other perturbations In the case of the IO^{++} the situation is complex

and the CR describes in fact on one side the axial field $\frac{1}{100}$ the two oxygen atoms containing the linear entity, of the two oxygen atoms containing the linear entity, and on the other side the equatorial field of the other ligands whose coordinating atoms are usually situated in a plane perpendicular to the actinyl axis. The axial field V_{ax} is known to cause an extremely strong

perturbation so that there is strong evidence that V_{ax}

V_{ax} > ER > soc > V_{eq} > Zeeman

Consequently each molecular orbital will be characterized to a good approximation in $D_{\infty h}$ by the quantum number λ .

Almost any theoretical treatment of the uranyl ion agrees in predicting that the two upper occupied

 (d)

 -0.1

Fig. 1. Absorption and MCD spectra of Cs₃UO₂F₅ and NBu₄UO₂(NO₃)₃. (a) Absorption spectrum of Cs₃UO₂F₅ in silicon grease. (b) Absorption spectrum of $NBu_4UO_2(NO_3)$ 3 in PMMA. (c) MCD spectrum of Cs3UO₂F_S in silicon grease. (d) MCD spectrum of $NBu₄UO₂(NO₃)₃$ in PMMA.

 Δ_g

 $F: \mathcal{Q} \times \mathcal{Q} \times \mathcal{Q} \times \mathcal{Q} \times \mathcal{Q}$ the positive A term.

At highest frequency the transition is allowed for left circularly polarized light between M =0 (ground state) and M =+l (excited state)

orbitals in the ground state are π_u and σ_u^+ while the two lowest unoccupied are the non bonding f orbitals $\phi_{\mathbf{u}}$ and $\delta_{\mathbf{u}}$.

The ground state is thus:

$$
\ldots (\pi_{\mathbf{u}})^4 (\sigma_{\mathbf{u}}^{\dagger})^2 \quad 1_{\Sigma_{\mathbf{g}}}^{\dagger}
$$

while a series of states arise from the excited configuration. Within a $\Lambda - \Sigma$ Russell-Saunders coupling scheme the states are given in Table I, with the magnetic moments and correlations of the irreducible representations in the $D_{\infty h}$, D_{3h} and D_{5h} groups. If the transition between the totally symmetric ground state and the excited state is allowed electronically, its polarization in D_{3h} and D_{5h} is given in parentheses. Obviously, no pure electric dipole transitions can be found as all transitions are parityforbidden. Electric dipole transitions are allowed to the extent that states of opposite parity are mixed in the f-states. Following the Judd and Ofelt theory, the simplest mechanism for inducing intensity is the coupling of states of opposite parity by way of the odd terms in the crystal field.

For a pure electric dipole transition in the UO_2 ⁺⁺ spectrum (for example a hypothetical ${}^{1}\Pi_{\mathbf{u}} \leftarrow {}^{1}\Sigma_{\mathbf{z}}^+$ transition) the matrix element in the electric dipole operator will be given by

TABLE I. Electronic States, Magnetic Moments (in D_{∞}) and Correlation Representations in D_{3h} and D_{5h} . (If the Transition Between the Totally Symmetric Ground State and the Excited State is Electronically Allowed, its Polarization is given in Parenthesis).

Electron configuration	Symmetry in $D_{\infty h}$		Magnetic moment (β)	Symmetry in D _{3h}	Symmetry in D_{5h}
$\sigma\delta$	1_{Δ}	Δ	-2	E'(x, y)	$\mathbf{E_2}^{\prime}$
			-4		$\mathbf{E_2}''$
σδ	$^3\Delta$ Δ		-2 $\mathbf 0$	$\left\{ \begin{array}{l} A_1^{''} \\ A_2^{''}(z) \\ E'(x, y) \\ E'' \end{array} \right.$	$\mathbf{E_2}^{\prime}_{n}$
σφ	1_{Φ}	Φ	-3	$\left\{\begin{array}{l} {A_1}'' \\ {A_2}''(z) \end{array}\right.$	E_2''
			-5	E'(x, y)	$E_1(x, y)$
σφ	$^3\Phi$ Φ		-3		${\bf E_2}''$
			-1	A_1'' $A_2''(z)$ $E'(x, y)$	${\bf E_2}'$
$\pi^3\delta$	1_{Φ}	Φ	-3	$\begin{cases} A_1'' \\ A_2''(z) \end{cases}$	${\bf E_2}''$
	г		-5	E'(x, y)	$E_1(x, y)$
$\pi^3\delta$	$^{3}\Phi$ Φ		-3	A_1'' $A_2''(z)$	E_2 "
			-1	E'(x, y)	$\mathbf{E_2}'$
$\pi^3\delta$	1_{Π}	$\boldsymbol{\Pi}$	-1	\mathbf{E}''	E_1''
$\pi^3\delta$	${}^{3}\Pi$ $\left\{\n\begin{array}{c}\n\Delta \\ \Pi \\ \Sigma^+, \Sigma^-\n\end{array}\n\right.$		-3 -1 [+1]	E'(x, y) $\mathbf{E}^{\prime\prime}$ A_1'	$\begin{array}{c} \mathbf{E_2}^{\prime}\\ \mathbf{E_1}^{\prime\prime}\\ \mathbf{A_1}^{\prime} \end{array}$
$\pi^3\phi$	$\mathbf{1}_\Gamma$	Γ	-4	E'(x, y)	$E_1(x, y)$
	H			E''	$A_1^{\prime\prime}$
$\pi^3\phi$	$\rm ^3\Gamma$ ∤г			E'(x, y)	$A_2''(z)$ $E_1(x, y)$
	Ф		-6 -4 -2	$\left(\begin{array}{c} A_1 \end{array}\right)^n$ $\left(\begin{array}{c} A_2 \end{array}\right)^n$	${\bf E_2}''$
$\pi^3\phi$	Δ	Δ	-2	E'(x, y)	$\mathbf{E_2}^\prime$
			-4	$\begin{array}{c}\nA_1''\\ A_2''\n\end{array}$	$\mathbf{E_2}''$
$\pi^3\phi$	$^3\Delta$ Δ		$-\sqrt{2}$	$E'(x, y)$ E''	$\begin{array}{cc} E_2^{'}\\ E_1^{''} \end{array}$
			$\mathbf 0$		

$$
\langle \psi(\Omega M_{\Omega}) | R_{\rho}^{(1)} | \psi(\Omega' M_{\Omega'}) \rangle =
$$
\n
$$
= (-1)^{\Omega - M_{\Omega}} \left(\frac{\Omega}{\rho M_{\Omega}} \frac{1}{\rho M_{\Omega}} \right) \langle \psi(\Omega) || R^{(1)} || \psi(\Omega') \rangle
$$
\nThis means that for $\Gamma_{g} \leftarrow {}^{1}\Sigma_{g}^{+}$ in D_{5h} absorption at the highest frequency occurs between the compo-
\nnents $M_{\Omega} = 0$ (ground state) and $M_{\Omega} = +4$ (excited state) for right circularly polarized light leading to a

 $\mathfrak{g}_i = (X + \mathcal{Z})$; total angular momentum quantum number in $D_{\infty h}$ symmetry; M_{Ω} : component along the z axial field axis. $\sum_{i=1}^{n}$ and force transition the matrix of matrix $\sum_{i=1}^{n}$

element will be proportional, being a series and faceelement will be proportional, besides a series of factors not explained here $[8]$, to a 3j-symbol including the symmetry dependent component q:

$$
\langle \psi(\Omega M_{\Omega}) | R_{\rho}^{(1)} | \psi(\Omega' M_{\Omega}') \rangle =
$$

...\langle \psi(\Omega M_{\Omega}) | U_{\rho+q}^{\lambda} | \psi(\Omega M_{\Omega}') \rangle =
....(-1)^{\Omega-M_{\Omega} \left(\frac{\Omega}{-M_{\Omega} \rho + q M_{\Omega'}} \right) \langle \psi(\Omega) || U^{\lambda} || \psi(\Omega') \rangle}

with $\sum_{i=1}^{N} x_i$ rank and component of the odd terms in the odd t the κ , q_i tank and component of the od

$$
V = \sum_{k\neq i} B_q^{(k)} (C_q^{(k)})_i
$$

with $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ $\frac{1}{2}$. T , T , T and T and T and T the Dsn T

ine crystal field potential for the

$$
V_{DSh}
$$
: even: $B_o^{\circ}B_o^2B_o^4B_o^6$

odd: Bs'

$$
D_{3h}: even: B_0^{\,o}B_0^{\,2}B_0^{\,4}B_0^{\,6}B_6^{\,6}
$$

odd:
$$
B_3^{\,3}B_3^{\,5}
$$

The even term B_6 ⁶ is responsible for the mixing in D_{3h} :

$$
(\Delta_{\mathbf{g}_{+2}}|C_{\pm 6}{}^6|\Gamma_{\mathbf{g}_{\pm 4}})
$$

The odd terms in both DJhand Dsh induce intensity $\frac{1}{2}$ because $\frac{1}{2}$ the mixing of the mixing

in D_{5h}:
$$
\langle \Gamma_{g_{\pm 4}} | C_{\pm 5}{}^5 | \Pi_{u_{\mp 1}} \rangle
$$
...
in D_{3h}: $\begin{cases} \langle \Delta_{g_{\pm 2}} | C_{\pm 3} {}^{3.5} | \Pi_{u_{\mp 1}} \rangle \\ \langle \Gamma_{g_{\mp 4}} | C_{\mp 3} {}^{3.5} | \Pi_{u_{\mp 1}} \rangle \end{cases}$

The transition moments are related to the following $\frac{1}{3}$.

$$
\langle \psi(\Omega M_{\Omega} | R_{\rho}{}^{\Omega}) | \psi(\Omega' M_{\Omega'}) \rangle = \dots \begin{pmatrix} \Omega & \lambda & \Omega' \\ -M_{\Omega} & \rho + q & M_{\Omega'} \end{pmatrix}
$$

For D_{5h} $\Gamma_g \longleftarrow 1\Sigma_g \begin{pmatrix} 0 & 4 & \text{or } 6 & 4 \\ 0 & \pm 1 & \pm 5 & \mp 4 \end{pmatrix}$ $A -$
For D_{3h} $\begin{pmatrix} \Gamma_g \longleftarrow 1\Sigma_g \begin{pmatrix} 0 & 4 & \text{or } 6 & 4 \\ 0 & \pm 1 & \pm 3 & \mp 4 \end{pmatrix} & A +$
 $\Delta_g \longleftarrow 1\Sigma_g \begin{pmatrix} 0 & 2 & \text{or } 4 & 2 \\ 0 & \mp 1 & \pm 3 & \mp 2 \end{pmatrix} & A -$

Fii. 3. Sign of the A terms for the induced electric dipole tg. 3. Sign

 \mathcal{L} and \mathcal{L} in \mathcal{L} in \mathcal{L} in \mathcal{L} in Dab negative A, \mathcal{L} in Dab negative A, \mathcal{L} In a similar way for $\Delta_{\mathbf{g}} \leftarrow 2_{\mathbf{g}}$ in D_{3h} negative A terms are found, because at the highest energy the transition between $M_{\Omega} = 0$ and $M_{\Omega} = +2$ occurs for right circularly polarized light.

By looking at the peaks that dominate the spectrum of $Cs₃UO₂F₅$ one finds three progressions in the symmetric stretching vibration (ν_s) that clearly exhibit negative A terms and correspond in our hypothesis to $\Gamma_{\mathbf{g}}$ states (see Fig. 1).

On the other side in the spectrum of $UO_2(NO_3)_3$ a progression appears with negative A terms that should be a Δ_{g} state while in the region at 29585 cm^{-1} a progression is found with positive A terms. This should be the homolog of the negative A signal at 29755 cm⁻¹ in $Cs₃UO₂F₅$ (see Fig. 1).

We emphasize that the sign argumentation developed here to identify the $\Delta_{\mathbf{g}}$ and $\Gamma_{\mathbf{g}}$ states in D_{3h} and D_{5h} complexes is supported by other considerations, including data on the vibronic coupling and polarization as well as calculation of magnetic moments [7].

Acknowledgements

This work is supported through grants from the I fils work is supported through grants from the IWONL and FKFO Belgium. The authors are indebted to the Belgian Government (Programmatie van het Wetenschapsbeleid). We thank F. Morissens for his technical help, and Prof. Nguyen Quy Dao for the $Cs₃UO₂F₅$ crystals.

References

- 1 R. G. Denning, T. R. Snellgrove and D. R. Woodwark, Mol. Phys. 30, 1819 (1975). $20.109.30, 1012 (1773).$
- *Mol. Phys.,* 32,419 (1976). $\frac{1}{2}$ R. G. D. S. P. N. P. Foster, T. R. S. Snell, T. R. S. Snell, T. R. Snellgrove and D. R. Snell, T. R. Snellgrove and D. R. Snell
- R. Woodwark,Mol. *Phys.,* 37, 1089 (1979).
- 4 R. G. Denning, T. R. Snellgove and D. R. Woodwark, *Mol. Phys.,* 37, 1109 (1979). $\frac{1}{100}$ C. Hys., 97, 1109 (1979).
- *Phys.,* 54,4178 (1971). FRys., 54, 4178 (1971).
6 C. Görller-Walrand and L. G. Vanquickenborne, J. Chem.
- *Phys.,* 57, 1436 (1972). 77.7 C. G. Griller-Wall
- *Chem. Phys., 76, 13* (1982). *Chem. Phys., 76, 13 (1982).*
8 R. D. Peacock, *Structure and Bonding, 22, 83 (1975).*
-